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THE SERIAL TEST FOR A NONLINEAR 
PSEUDORANDOM NUMBER GENERATOR 

TAKASHI KATO, LI-MING WU, AND NIRO YANAGIHARA 

ABSTRACT. Let M = 2W, and GM = {1,3...M - 1}. A sequence {yn},yn C 
GM, is obtained by the formula Yn+l-= ay,, + b + cyn mod M. The sequence 
{ xn} Ixn = yn/M, is a sequence of pseudorandom numbers of the maximal 
period length M/2 if and only if a + c 1 (mod 4), b -2 (mod 4). In this 
note, the uniformity is investigated by the 2-dimensional serial test for the 
sequence. We follow closely the method of papers by Eichenauer-Herrmann 
and Niederreiter. 

1. INTRODUCTION 

For generating uniform pseudorandom numbers (denoted as PRN) in the interval 
I = [0,1), the linear congruential methods are commonly used. Recently several 
nonlinear methods, especially the inversive congruential one, were proposed and 
investigated. For a modulus M, let 

ZM = {0,l, ..., M-1} = Z/M. 

In the linear method, a sequence {Yn} in ZM is generated by 

(l-) Yn+1l-CYn + b (mod M), n = O, 1, ....I 
where c, b E ZM. The PRN are obtained by the normalization 

(1.2) Xn = yn/M. 

In the inversive method with power of two modulus, let M = 2W and 

GM = {1, 3, ..., M-1} = { positive odd integers less than M}. 

For any u E GM, there is a unique u E GM such that Hua- 1 mod M. Now a 
sequence { Yn} in GM is generated by the inversive recursion formula 

(1.3) Yn+1a7n?+ b (mod M), n = 0,1,..., 

in which a, b E ZM are chosen so that Yn E GM implies Yn+1 C GM 
In a previous note we have proposed another nonlinear method which is given 

by the following formula, with the modulus M = 2W, 

(1.4) Yn+l--aVn + b + CYn (mod M), n = 0,1, .... 
in which a, b, c E ZM should be such that Yn C GM implies Yn+1 C GM. The PRN 
{xn } is defined by (1.2). In [7], we proved the following Theorem A, which shows 
that the modified inversive method (1.4) bears close resemblance to (1.3): 
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Theorem A. Let M = 2W, w > 3. Then the PRN {xn} derived from (1.4) is purely 
periodic with period M/2 if and only if 

a+c--1 (mod4) and b-2 (mod4). 

Now we will study the behavior of these PRN under the 2-dimensional serial 
test. That is, we will estimate the discrepancy of the PRN. For a dimension k > 2 
and for N arbitrary points to, t1, ..., tNl E [0, 1)k we define the discrepancy 

(1.5) DN(to, tl, ..., tN-1) = supjjFN(J) - V(J)j, 

where the supremum is extended over all subintervals J of [0, 1)k, FN(J) is N-1 
times the number of terms among to, tl, ..., tN-l falling into J, and V(J) denotes 
the k-dimensional volume of J. If {xn} is a sequence of PRN in [0,1) with period 
p, then we consider the points 

Xn = (Xn,Xn+1 ,...,Xn+k-1) E [O, 1)k for n=0,1,,..,p-1, 

and write their discrepancy DP (XO, xi, ..., xp-1) as D(k). 

Theorem 1. Let M = 2w (w > 6) and a, b, c E ZM. Suppose a+c _ 1 (mod 4), b 
2 (mod 4) and a $ 0. Then, for the PRN {xn} in Theorem A, we have 

(I) If c is an even number, hence a is odd, then 

D(2) < 2KM-1/2(log M)2 + 1.12M-1/2 log M + 1.35M-1/2 + 4/M, 
M12 

with K = 2/{(23/2 - 1)BP(J2}. 
(II) If c is odd (hence a is even), then writing a = 2ta', a' odd, we have 

D(2) < 2t/2M-1/2{2K(logM)2 + (1.12) logM + 1.35} + 4/M + 2L/M2, 

with K = 2/{(23/2 - 1)BP(J2} and L = 22t{2(t - 1)(t + 2)2 + 14(t + 6)2}, 
assuming that w > t + 6. 

Theorem 2. Let M = 2W, w > 6. LetO < r < 2 and A(r) = (4-r2)/(8_r2). 
Suppose c E ZM is given. 

If c is even, there are more than A(r)M/8 values of a E ZM such that a + c 
1 mod 4, and for any b E ZM with b -2 mod 4, we have 

D(k) > K'M-112 with K' = r/(w + 2). M/2 = 

If c is odd, there are more than A(r)M/32 values of a E ZM such that a + c 
1 mod 4, and for any b E ZM with b -2 mod 4, we have 

D(k) > (2K'/3)M-1/2 with K' = r/(w + 2). 

Our proofs of Theorems 1 and 2 are almost the same as in [9, Theorem 2], [6, 
Theorems 1-2], respectively. The lattice structure of the sequence generated by 
(1.4) will be studied in another paper. 
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2. PROOF OF THEOREM 1 

We closely follow the method in [9, p.141]. Let M = 2W, w > 6. 
Suppose m = 2f, with a positive integer f, be given. For k > 1, let Ck(m) be 

the set of all nonzero lattice points (hl, ..., hk) C Zk with -m/2 < hj < m/2, for 
1 < j < k. We put 

r(h,m) 1 for h= 0, 

( msin(7rihj/m) for h E Cl(m), 

and for h = (h1, ..., hk) E Ck (m) we define 

k 

r(h, m) = I|r(hj, m). 
j=l 

For real s we write e(s) = e For x,y E Rk, x y denotes the inner product. 
We put, for integers u, v, 

S(u, v; m) = Ee((un + vnf)/mn), 

in which n E Gm denotes the number such that nn = 1 (mod m). This sum has 
the following properties [12, 9]: 

(2.1) S(u, v; m) =S(1, uv; m) if u is odd, 

(2.2) S(u, v; m) = 0 if u + v _ 1 (mod 2), 

(2.3) S(u, v; m) = 2dS(u/2d, v/2d; 2f d) if u v 0 mod 2d and d < f, 

where in (2.2) and (2.3) we assume that f > 2. Further (see [9, p.140]), 

{ 4 if v_3 mod4, 

(2.4) 1S(1,;8)1 = j0 otherwise, 

f4if v_1 mod4, 
(2.5) 1 S(l , v; 16)1 4= 

2 ifv= md4 

( 0 otherwise, 

(2.6) IS(1, v; 32)? < { 8V' if v 
= 

5 mod 8, 
O otherwise. 

For f > 6, we have 

21f 2(f+3)/2 if v -1 mod 8, 

t O otherwise. 

The following lemmas are from [9, p.136 and p.140]. 
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Lemma 2.1. Let m ? 2 be an integer and let YO,Y1, ,YN-1 C Zk be lattice 
points all of whose coordinates are in [0,in). Then the discrepancy of the points 
tn = yn/m O0 < n < N-1, satisfies 

tnin Yn/ N _ = I 
hC-Ck(M) 0= 

Lemma 2.2. Let m = 2f. For f > 6 and r odd, we have 

(2.8) 5 csc( )< (f +)(log2) m +0.2126m, 
m 4wr 

kcCC (m),k-r(mod 8) 

and for f ? 3 we have 

(2.9) 5 csc( ) < (f + i)(log 2) m + 0.3024m. 
m 7 

kECl(m),k odd 

Now we prove Theorem 1. Since {YO,Yl, ..YM/2-I} = GM, we have 

{(Yn,Yn+i);O ? n ? M/2 - 1} = {(n, an + b + cn); n c GM}. 

Lemma 2.1 yields 

(2.10) D2)/?< 
2 2 

MS(hM) 
hEC2(M) r(h, M)' 

where for h = (hi, h2) c C2(M) we have 

I 5 ( (hi + h2c)n + h2an + h2b )= S(hi + h2c, h2a; M) . 
nEGm 

Now gcd(hi, h2, M) = 2d with 0 ? d < w - 1, so splitting up the following sum 
according to the value of d, we get 

I S(h)l wlI 
Ls 

, 
r(hMri 

f ) Td 
hEC2(M) ' d=O 

with 
T= S(hi + h2c, h2a; M)j 

h r(h, M) 

where the last sum is extended over all h= (hi, h2) E C2(M) with gcd(hi, h2, M) = 

2d. It follows immediately that 

1 
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Now consider 0 < d < w - 2. Write k1 = hj/2d, k2 = h2/2d. If one of k1 or k2 is 
even, then (2.3) and (2.2) imply S(hi +h2c, h2a; M) = 0. Thus it suffices to suppose 
that both k1 and k2 are odd. 

We divide the proof into two cases (I) and (II): 
(I) c is an even number, hence a is odd. In this case, (2.3) and (2.1) yield 

S(h1 + h2c, h2a; M) = 2dS(1, (k1 + k2c)k2a; 2w-d). 

Thus we obtain 

(2.12) Td = 2d JS(1, (ki + k2c)k2a; 2w-d) 

k 
Z 

2GC1 (2w-d) r(ki2d,M)r(k22d,M) 

k1,k2 odd 

For 0 < d < w - 6, we use (2.7) to get 

(2.13) Td < 2(w+d+3)/2 {r(kl2d, M)r(k22d, M)}-1, 

with the sum over odd numbers ki, k2 e C0(2w-d) such that (k1 + k2c)k2a 
(mod 8), that is, k1 + k2c _ k2a (mod 8), i.e., 

(2.14) ki _ k2(a-c) (mod 8). 

Thus we have 

_ (-3w+d+3)/2 ii- Iscjl (2.15) Td < 2 csc(2d) CSC( E 2w d E ~~2w-d) 
k2 Cl (2w) ki EC (2w) 

k2 odd kj=_k2(a-c) (mod 8) 

Together with (2.8) and (2.9), this yields 

Td ? 2(w-3d+3)/2{ (w - d + 1) log2 + 0.2126}{ (w - d +.1) log2 + 0.3024} 

< 2(w-3d+3)/2{ (log M)2 + 0.127logM + 0.1401 + 0.0122d2}. 
4wr2 

Therefore, as in [9, p.142], 

w-687 

(2.16) Td <` M1/2{K(logM)2 + 0.56 logM + 0.675} - 
876 

d=O 

with K - 2/{(23/2 - 1)7r2}. 

For d = w - 5, we get from (2.6) and (2.13) 

Tw-5?<2w-2 2 + V csc( k2 csc( ) 
k2 cC1 (32) 32 ki C1 (32) 32 

k2 odd ki-5k2(a-c) (mod 8) 



766 TAKASHI KATO, LI-MING WU, AND NIRO YANAGIHARA 

in which we note that, in the second sum, k1 _ k2(5a - c) -5k2(a - c) mod 8, 
since c is even. As in [9, p.142], by distinguishing the cases a - c 1 or a - c 5 
mod 8, we have 

(2.17) Tw5 < 240/M. 

Similarly, using (2.4), (2.5) and (2.13), we get 

(2.18) TW4 < 60/M, Tw-3 < 14/M. 

Since IS(1,v;4)1 = 2 for v odd, it follows from (2.12) that 

(2.19) Tw-2= 4/M. 

By combining (2.11) and (2.16, 17, 18, 19), we get 

w-1 

E : Td < M1/2{K(log M)2 + 0.56 log M + 0.675} + 1, 
d=O 

with the constant K in (2.16). The desired result follows from (2.10). 
(II) c is an odd number, hence a ($& 0) is even, a e ZM. Put a = 2ta', a' odd. 

Consider some Td, 0 < d < w - 2. 
We always assume that both kj = hj/2d, j = 1,2, are odd. Put 25 = 

gcd(ki + k2c, a, 2w-d-1), and ri = (k1 + k2c)/2', r2 = k2a/2'. 
(II-1) Suppose t > w - d - 1. If s <w - d - 1, then 

S(h) = S(h1 + h2c, h2a; M) = 2d+SS(rl, r2; 2w-d-s) = 0 

by (2.2), since ri is odd and r2 is even. If s = w - d - 1, then 

S(h) = 2d2W d-lS(ri r2;2) = 2w-1 = M/2. 

Ifw-d>3 then 

T M 1 
ki +k2C=O mod 2w-d-1 r(ki2d, M)r(k22d, M) 

kl,k2 odd 

= M E csc(2 ) E csc(2 ) 2M Ld cc2w-dj 2w-d 
k2 CC(2w) kiCCi(2w) 

k2 odd kl-=-k2c mod 2w-d-1 

< 1 { (w - d + 1) log 2 + 0.3024}2 22(w-d) 
-2M wr 

by Lemma 2.2. Since 3 < w - d < t + 1, we have 

Td< ? {(t+2)log2 +0.3024}2. 
Md w 
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If w-d = 2, then 

_< 4 csc2(7r/4) _4 

TW-2- 2M M 

Hence, 

(2.20) 

S Td =Tw-2 + 5 Td 

w-2?d?w-t-1 w-3>d>w-t-1 

4 (t - 1)2t+1 (t + 2) log 2 + O 13024}2 

in which the second term does not appear if t = 1. 
(11-2) Now suppose 1 < t < w - d - 2. 
We define s and r1, r2 as above. Obviously, s < t, hence w - d - 1 - s > 1. Thus 

one of r1 or r2 must be odd. If one of r1 or r2 is even, 

S(h) = S(h1 + h2c, h2a; M) = 2d+,S(rl, r2; 2w-d-s) = 0. 

Hence both r1 and r2 must be odd, which implies s = t. 
Let d < w - t - 6. We argue as in the case d < w - 6 of (I), with w - t instead 

of w; we obtain 

Td 
? 

2(-3w+d+t+3)/2 CSC( 
csc ) S 

CSC(kl) E ~2w-d 2- 
k2ECC(2wd) kiGCC(2w-d),k odd 

k2 odd rlr2=1 (mod 8) 

2(-3w+d+t+3)/2 5 csc(t2 ) SC(7rtklt) 
E' w E2w-d 

k2ECl(2wd) kiGC1(2w-d),ki odd 
k2 odd rl=r2 (mod 8) 

2(-3w+d+t+3)/2 csc(7_ I k2l d ) k 
E SC(y -d2w-d) 

k2ECC(2wd) ki EC, (2wd),ki odd 
k2 odd ki =k2(a-c) (mod 8 2t) 

< 2(-3w+d+t+3)/2 csc( irk2 csc( irk1 E ~~2w-d) 2w-d) 

k2ECC(2wd) klECI(2w-d),kl odd 
k2 odd kl=_k2((a-c) (mod 8) 

< 2(w-3d+tH3)/2{ (w - d ? 1) log 2+ 0.2126}{ (w - d + 1) log2 ? 0.3024} 
47r ir 

< 2(w-3d+t+3)/2{ (logM)2 + (0.127) logM + 0.1401 + 0.0122d2}, 

since the set {ki;ki -= k2(a - c) (mod 8 2t)} is contained in {kl;ki 
k2(a - c) (mod 8)}. Hence we obtain, as in [9, p.142], 

w-t-6 

(2.21) E Td < 2t/2M1/2{K(logM)2 + 0.56logM + 0.675} - 876/M, 

d=O 

with K = 2/{ (2 3/2 _1)7r2}. 
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For d = w - t -5, we have as in [9, p.142], with r1 and r2 as above, 

Tw-t-5 _ 2-w -2E csc( Ew21 ) S csc( 21+5) 
2t+5 2t+5 

k2 Cl(2t+5) klEC1(2t+5),ki odd 
k2 odd rlr2-=5 (mod 8) 

? 2-w2 2 +V 
N/2 csc(wiki)wjij 

2t+5 CSC(2+5 
k2 EC, (2t+5) klEC1(2t+5),ki odd 

k2 odd ki =k2 (5a-c) (mod 8) 

since {ki; rlr2 -5 (mod 8)} = {ki; k1 + k2C 5k2a (mod 8 . 2t)} is contained in 
{ki; k1 _ k2(5a - c) (mod 8)}. Thus we get 

(2.22) Tw-t-5 < (t + 6)2 22t+3/M. 

Similarly, using (2.4), (2.5), we get 

(2.23) Tw-t-4 < (t + 5)2 22t/M, Tw-t-3 < (t + 4)2 22t/M. 

Since IS(1,v;4)1 = 2 for v odd, it follows that 

(2.24) Tw-t-2 ? (t + 3)2 22t+2/M. 

By (2.11), (2.20), (2.21), (2.22), (2.23), (2.24), we obtain 

w-1 

E Td < 2t/2M1/2 {K(log M)2 + 0.56 log M + 0.675} + 1 + L/M, 
d=O 

with K = 2/{(23/2 - 1)7r2} and L = 22t{2(t - 1)(t + 2)2 + 14(t + 6)2}. Thus, the 
desired result follows from (2.10). 

3. PROOF OF THEOREM 2 

The proof is almost the same as in [6]. 
When c is an even number. Calculating as in [6, p.778], putting h = (1, 1, 0, ..., 0), 

we have 

(7r +2)MD/(k)2 > le( MYn )j =j S(l+c,a;M) =jS(1,(1+c)a;M)j. 

By [6, Lemma 4], there exist more than A(r)M/8 values of (1 + c)a e ZM such that 
(1 + c)a -1 (mod 8), and IS(1, (1 + c)a; M)j > rM1/2. Then a _ 1 + c (mod 8), 
hence a + c--1 + 2c- 1 (mod 4). 

When c is odd. If c = 1 + 8k, then put h = (3, 1, 0, ..., 0) and get 

3(r + 2)MD j(k) > e 3Yn Yn+l )I j= JS(3 + c, a; M) 

- 41S(1 + 2k, a/4; M/4)1 > 4r(M/4)1/2 = 2rM1/2, 
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for more than A(r)M/32 values of (1+2k)a/4 with (1+2k)a/4 -1, i.e., a/4 _ 1+2k 
mod 8. Then a-4+8k=3+c, hence a+c--3+2a-1 mod 4. 

If c = 3 + 4k, then put h= (-1, 1, O, ..., O) and get 

(,r + 2)MD (k)>IV' Yn~ ? Yn1+i (7r+2)MD /2 = lEe( YmY f)I = S(c -1, a; M) 

= 21S(1 + 2k, a/2; M12)1 > 2r(M/2)1/2 = -rM12 

for more than A(r)M/16 values of (1+2k)a/2 with (1+2k)a/2 _ 1, i.e., a/2 -1+2k 
mod 8. Then a= 2+4k=c-1, hence a+c_ 1+2a-1 mod 4. 

If c 5 +8k, then put h = (-1,1,O,...,O) and get 

(r + 2)MDL,(k2 ? >S(c-1,a;M)1 =41S(1+2k,a/4;M/4)1 > 2rM1/2 

for more than A(r)M/32 values of (1+2k)a/4 with (1+2k)a/4 -1, i.e., a/4 _ 1+2k 
mod 8. Thena-=4+8k=c-1, hence a+c_ 1+2a-1 mod 4. 
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